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LIQUID FILTRATION IN AN UNBOUNDED WATER-BEARING STRATUM

WITH AN INCLINED CONFINING BED

UDC 517.958.532E. V. Gubkina and V. N. Monakhov1

Polubarinova-Kochina, Numerov, and other authors paid much attention to filtration problems of a
heavy incompressible liquid in inclined water-bearing strata. In this work, therefore, classical schemes
of liquid filtration on inclined confining beds are considered along with the general problem of filtration
for arbitrary polygonal impermeable walls of a water-bearing stratum. In doing so, we also consider
direct problems of physical and geometrical parameters of filtration flows.
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1. GENERAL PROBLEM OF FILTRATION

We start from the general problem of liquid filtration in an unbounded porous layer studied in [1] assuming
that the angles −αsπ and −αmπ at the apices zs =∞ and zm =∞ of the polygon P formed by infinite segments
P ∗k , P ∗k+1 (k = s, m) are arbitrary, i.e., αs 6= 0 and αm 6= 0 (Fig. 1).

The filtration domain D is bounded by a free (unknown) boundary L and by a specified polygon P formed
by permeable walls of a water-bearing stratum (P 1 and P 3), an impermeable top of the water-bearing stratum
adjoining to them (P 1

0 ∪ P 3
0 ), P k0 ∩ P k = zk0 (k = 1, 3), and an impermeable foot of the water-bearing stratum P 2.

We direct the x axis opposite to the vector of gravity acceleration and assume that z = x+ iy. Let us denote
the apices of the polygon P by zk (k = 0, n+ 1), the angles at them by αkπ, and the lengths of finite segments of
the polygon P by lk = |zk − zk−1|. The points zk0 (k = 1, 3) are also apices of the polygon P : z1

0 = zs0 (0 < s0 < s)
and z3

0 = zm0 (m < m0 < m).
Let zs = P 1

0 ∩ P 2 and zm = P 2 ∩ P 3
0 (0 < s < m < n+ 1) be points at infinity upstream and downstream,

respectively (zm = zs =∞).
For each of the infinite segments Ps and Ps+1 ending at the points (zs−1, zs), (zs, zs+1) and segments Pm and

Pm+1 ending at the points (zm−1, zm), (zm, zm+1), we fix two finite points (z∗s−1, z
∗
s ), (z∗s+1, z

∗
s+2) and (z∗m−1, z

∗
m),

(z∗m+1, z
∗
m+2) and include them into the number of apices of P with angles at them equal to π.

An analytical function w(z) = ϕ + iψ (z = x + iy) is sought in the domain D as the complex potential of
filtration.

In the plane of the complex potential w = ϕ + iψ, to the filtration domain D there corresponds a benched
band D∗ bounded by the straight lines ψ = const and ϕ = const: {−∞ < ϕ < ∞, ψ = 0} ≡ w(P 2) (the image
of the confining bed P 2); {ϕ < ϕs0 , ψ = Qs} ≡ w(P 1

0 ), {ϕ = ϕ0, Q−s < ψ < Q+
s } ≡ w(P 1), {ϕ0 < ϕ < ϕn+1,

ψ = Q0} ≡ w(L), {ϕ = ϕn+1, Q−m < ψ < Q+
m} ≡ w(P 3), and {ϕn+1 < ϕ, ψ = Qm} ≡ w(P 3

0 ). Here ϕk = Rewk are
the given values of bottom drive, Q−j = min (Q0, Qj) and Q+

j = max (Q0, Qj) (j = s,m), Q0, Qs, and Qm are the
sought values of water discharge under a dam (Q0) and at the upper (Qs) and lower (Qm) infinite apices zs and zm
of the porous layer. The given scheme of the filtration flow determines the values of the angles γjπ at the finite
apices wj ∈ ∂D∗ (j = 0, n+ 1, s− 1, m+ 1) equal to π/2 or 3π/2. Here, the conditions

γ0 + γs−1 = γn+1 + γm+1 = 2
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Fig. 1

must be satisfied, which, in particular, determine the relation between the sought discharges Q0, Qs, and Qm. For
example, we have Q0 > Qs for γ0 = 1/2 and Q0 < Qs for γ0 = 3/2 . Other types of domains D∗ are considered in
the following sections.

In accordance with the geometry of the domains D and D∗, the representations for derivatives of conformal
mappings z: E → D and w: E → D∗ (E: Im ζ > 0) take the form [1, 2]

dz

dζ
=

Π(ζ)
πi

∫
|t|>1

|Π0(t)| dt
Π(t)(t− ζ)

, Π(ζ) =
n+1∏
k=0

(ζ − tk)βk ,
dw

dζ
=

5∏
j=0

(ζ − τj)γj−1. (1)

Here βk = αk − 1 and αkπ are the interior angles at the apices and ends zk (k = 0, n+ 1) of the polygon P

(zs = zm =∞, αs 6 0, αm 6 0, and 0 6 s < m 6 n+ 1), tk are the preimages of zk = z(tk), τj are the preimages of
the apices wj = w(τj) of the polygon ∂D∗, coinciding with part of tk, γj = 1/2 and 3/2 (j 6= s, m) and γs = γm = 0.
Let us fix the constants t0 = −1 and tn+1 = 1.

2. SYSTEM OF EQUATIONS FOR PARAMETERS

If the vector T = (t1, t2, . . . , tn) ∈ Rn of unknown constants tk (k = 1, n) in representation (1) is arbitrarily
fixed, then the corresponding mapping z = z(ζ, T ), z: E → D(T ) transfers the segment [−1, 1] to the polygon P (T )
with the sides parallel to the sides of the given polygon P . Let us construct a system of equations relative to the
vector T , whose solution secures the equality P (T ) = P .

We assume that z0 = 0 and specify the lengths lk = |zk − zk−1| of the finite segments of the polygon P :

lk =

tk∫
tk−1

|Π(t)| |M(t)| dt (k = 1, n, k 6= s,m). (2)

Since the point z0 = 0 is fixed on the polygon P 1 ∪ P 1
0 , the corresponding conditions (2) completely specify the

position of this point. Similarly, to fix the position of the polygons P 2 and P 3 ∪ P 3
0 , let us specify in them the

coordinates of the points zs+1 and zm+1. Since the boundary condition on the free boundary preimage yields

|x(tn+1)− x(t0)| = |ϕn+1 − ϕ0| = H (| lnH| 6 N <∞),

the value of |x(tn+1)| = |Re zn+1| = H is given. Therefore, to determine the position of the polygons P 2 and P 3∪P 3
0 ,

it is sufficient that the following equations should be satisfied:

ls + ils+1 =

ts+1∫
ts−1

dz

dζ
dζ, lm = Im

tn+1∫
t0

dz

dζ
dζ. (3)
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We assume that uk = tk − tk−1 (k = 1, n+ 1) and introduce the vector u = (u1, . . . , un) ∈ Rn, in terms of which
the vector T = (t1, . . . , tn) ∈ Rn is uniquely determined. Then, the vector u ∈ Rn is a solution of the functional
equation

l = g(u, α), (4)

where lk and l = (l1, . . . , ln) are represented as (2) or (3); α = (α0, . . . , αn+1). According to formulas (4) to each
fixed vector u = (u1, . . . , un), uk 6= 0 there corresponds a polygon P (u) coinciding with P only when (4) with the
given lk corresponding to P is satisfied. In this case, the polygons P (u), generally speaking, are multivalent, and
some of their segments can have external self-intersection. To take this possibility into account, we introduce some
definitions. Let us put infinite segments P0 = {z: Re z = 0, Im z < 0} and Pn+2 = {z: |Re z| = H, Im z < Im zn+1}
from the points z0 and zn+1, replacing the unknown curve L, and construct a polygon P̄ = P ∪ P0 ∪ Pn+2.

Let us call the vector p = (l, α) ∈ R2n+1 the geometric characteristics of the polygon P (polygon P̄ ) and
impose the following conditions on (l, α):

0 < δ 6 αk 6 2, k 6= s,m, | ln lk| 6 δ−1 (k = 1, n),
(5)

−1/2 + δ 6 (αs, αm) 6 0, 1/2 6 α0 6 3/2− δ, αn+1 = 1.

Condition (5) imposed on the slope angle α0π at the point z0 = 0 and the equality αn+1 = 1 maintain the
boundedness of M(ζ) in (1) for Im ζ > 0.

Let the following inequalities be satisfied for every curve Pij ⊂ D0, ∂D0 = P̄ with the ends on non-adjoining
segments (Pi, Pj) ∈ P̄ :

|Pij | > δ > 0, |i− j| > 2. (6)

If the domain D0 is nondegenerate, then the derivative of the conformal mapping Z: E → D0 is to be represented
in the form

dZ

dζ
= CΠ(ζ), C = const, Z: E → D0. (7)

Polygons P (polygons P̄ ), for which assumptions (5)–(7) are fulfilled will later be called simple, and the class of
simple polygons will be denoted by G(δ) [P ⊂ G(δ) or p = (l, α) ∈ G(δ)].

The simple polygons P ⊂ G(δ) and the polygons P̄ corresponding to them, generally speaking, are multiva-
lent and admit external self-intersections of nonadjoining segments, i.e., P and P̄ may lie on the Riemann surfaces
of the zeroth kind.

3. A PRIORI ESTIMATES AND LOCAL UNIQUENESS
OF THE SOLUTION

Theorem 1 (on a priori estimates). Let Eq. (4) for (l, α) ∈ G(δ) have a solution u = (u1, . . . , un) ∈ Rn,

uk > 0. Then, the following inclusion is fulfilled (a priori estimates):

u ∈ Ω = {u: 0 < ε(δ) 6 uk, k = 1, n}. (8)

Proof. We start to prove estimates (8) from verifying their correctness for the parameters τk of the conformal
mapping w : E → D∗:

|τj+1 − τj | > ε > 0, j = 0, 5 (τ6 = τ0). (9)

Inequalities (9) ensure nondegeneracy of the domain D∗ and are proved by the method of the extremal lengths of
the family of curves [3].

Let us consider the filtration domain D (Fig. 1) as a “tetragon” with the apices z0, zn+1, z
1
0 , z

3
0 , and z∗m+1

and map conformally the domain D∗ onto the rectangle Ω in the auxiliary plane W (W : D∗ → Ω) with the apices
Wk = W (wk), wk = {w0, wn+1, w

1
0, w

3
0}.

First of all, note that the module of the “tetragon” D (modD) with a pair of the opposite “sides” L

and Γ = (P 2 ∪ P 1
0 ∪ P 3

0 ) is equal to the module of the rectangle Ω by virtue of the conformality of the mapping
W = W (z), W : D∗ → Ω. To estimate modD, it is sufficient to determine the extremal length λ(ω) of the family
of curves {ω} connecting L and Γ. Along with {ω}, we consider the family of curves {ω∗} connecting the “sides”
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P0 ∪ Pn+2 and Γ of the polygon P̄ , D ⊂ D(P̄ ) (P0 and Pn+2 are the rays emanating from the points z0 and zn+1).
Let us draw a segment of the straight line x = xn+1 from the point zn+1 until it intersects P 1 ∪ Γ at the point
z∗ ∈ (P 1 ∪ Γ) (if there is no intersection, z∗ =∞).

We assume that L∗ = {x = xn+1, yn+1 < y < ȳ} and P 1
∗ = {x = xn+1, ȳ < y < y∗}, ȳ = (y∗− yn+1)/2. The

domain obtained is denoted by D∗ ⊂ D.
If z∗ ∈ P 1, then we take Γ∗ = Γ as the side opposite to L∗. For z∗ ∈ Γ, we have Γ∗ = Γ\ l∗, where l∗ ⊂ P 1

0 is
part of the segment P 1

0 from the point z∗ to the point z1
0 .

Consider the family of curves {ω∗} connecting Γ∗ and L∗ in the domain D∗ ⊂ D. The modules λ(ω), λ(ω∗),
and λ(ω∗) of these families are related as follows:

0 < λ(ω∗) 6 λ(ω) = modD = modD∗ < λ(ω∗) <∞.

By virtue of the fact that the “tetragons” D∗ and D(P̄ ) are fixed, the values of λ(ω∗) and λ(ω∗) can be obtained ex-
plicitly. The estimates obtained for λ(ω) imply the nondegeneracy of the polygon ∂D∗, which proves the correctness
of estimates (9).

To prove estimates (8) for the remaining uk = tk − tk−1 (k = 1, n), let us assume the opposite, namely,
that part of uk may tend to zero, i.e., the constants tk corresponding to them converge: |tk+1 − tk| → 0. Let,
for the time being, the converging parameters tk not include t0 = −1 and tn+1 = 1, i.e., tk, 1 6 i 6 k 6 j 6 n

converge. By virtue of (9), the constants ts = τ2 and tm = τ3 cannot simultaneously be among the converging
parameters. Therefore, let us consider the case zj 6=∞ (while the possibility of zi =∞ is not excluded), representing
lj = |zj − zj−1| in the form

lj =

tj+1∫
tj

j∏
k=i

|t− tk|βk |Mj(t)| dt (βk = αk − 1, k = 0, n+ 1).

Here |Mj(t)| = |Πj(t)| |M(t)| 6= 0,∞ at t ∈ [tj , tj+1) and |Πj(t)| =
i−1∏
k=0

|t− tk|βk
n+1∏
k=j+1

|t− tk|βk .

Let us assign all βk < 0 to Σ′ and all βk > 0 (k = i, j) to Σ′′ and assume that ν = −Σ′βk µ = Σ′′βk.
Assumptions: µ− ν + 1 6 0 and (tj − ti)→ 0 (1 6 i < j 6 n).
By the condition, tj+1 and tj do not converge, consequently, there exists ε > 0 such that ε+ tj < tj+1. Since

|Mj(t)| > a 6= 0, t ∈ [tj , tj + ε); t− tj 6 t− tk 6 t− ti, then,

lj =

tj+1∫
tj

∣∣∣dz
dt

∣∣∣dt > tj+ε∫
tj

∣∣∣dz
dt

∣∣∣dt > a tj+ε∫
tj

(t− ti)−ν(t− tj)µ dt.

We substitute the variables in the last integral assuming that t = rs+ tj . Then, we obtain

lj > ar
µ−ν+1

ε/r∫
0

sµ(1 + s)−ν ds→∞ at r = (tj − ti)→ 0,

which contradicts conditions (5).
If µ− ν + 1 = 0, we obtain in a similar way

lj > a

ε/r∫
0

sµ−ν
(

1 +
1
s

)−ν
ds > 2−νa

ε/r∫
1

ds

s
→∞ at r → 0.

Assumptions: µ− ν + 1 > 0 and (tj − ti)→ 0 (1 6 i < j 6 n).
Let us construct a semicircle Kr of radius r = tj − ti centered at the point ζ0 = (tj + ti)/2 in the upper

half-plane Im ζ > 0, choosing r sufficiently small for the inequalities ti − r/2 > ti+1 and tj + r/2 < tj+1 to be
fulfilled. We have

|Mj(ζ)| 6 A <∞, ζ ∈ Kr; r/2 6 |ζ − tk| 6 2r, ζ ∈ Kr, k = i, j.

Consider the curve Λr = F (Kr) ⊂ D (F : E → D) with the ends on the segments Pi−1 and Pj+1 of the
polygon P . For r → 0, the length |Λr| tends to zero, and thus also lk → 0 (k = i, j):
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|Λr| =
∣∣∣ ∫
Kr

dz

dζ
dζ
∣∣∣ 6 πrA|Π′(ζ)| |Π′′(ζ)| 6 Aπr(2r)µ

(r
2

)−ν
→ 0.

Here only the powers βk < 0 enter into Π′ = Π′(ζ − tk)βk and all the βk > 0 (k = i, j) into Π′′ . Thus, the
assumption that r = (tj − ti)→ 0 is incorrect, i.e., there can be found such ε > 0 for which (tj − ti) > ε > 0.

Similarly, we consider the case zj =∞ and zi 6=∞ with the side li = |zi − zi−1| taken for µ− ν + 1 6 0.
Therefore, we have simply to consider the case where only one of the parameters t0 or tn+1 is among the

converging tk, for example, t0 = −1, i.e., (tj−t0)→ 0. Note that 0 < j < m, since according to (9), tm−ts > ε > 0.
We assume that

M0(ζ) = (ζ − t0)α0−1/2+γΠ∗(ζ)M(ζ), Π0(ζ) =
j∏

k=1

(ζ − tk)βk(ζ − t0)β̄0 ,

where Π∗(ζ) = Π(ζ)Π−1
0 (ζ), γ0 = 0 for α0 > 1/2 and 0 < γ0 � 1 for α0 = 1/2, and β̄0 = −1/2− γ0 (below, the bar

over β0 is omitted).
Let us assign all βk < 0 to Σ′ and all βk > 0 (k = 0, j) to Σ′′ - (β0 = β̄0) and denote ν = −Σ′βk and

µ = Σ′′βk.
Assumptions: µ− ν + 1 6 0 and (tj − t0)→ 0 (1 6 j 6 m− 1).
According to the choice of β̄0 = −1/2 − γ0 , we have M(t0) 6= 0,∞; therefore, the inclusion of t0 into the

number of converging parameters does not complicate the proof in the case considered.
Assumptions: µ− ν + 1 > 0 and (tj − t0)→ 0 (1 6 j 6 m− 1).
Similarly to the case r = (tj − ti)→ 0, t > 1, it is found that |Λr| = |F (Kr)| → 0 as r → 0, where Kr = {ζ:

Im ζ > 0, |ζ − t0 − r/2| = r}, and F : E → D.
Since the image z∗(r) of the point t0 − r/2 = t∗(r) ∈ Kr lies at the free boundary L, it must be proved

additionally that z∗ = F [t∗(r)]→ 0 as r → 0 [F (t0) = 0]. Taking into account that
j∑

k=0

βk = µ− ν > −1, we obtain

|F (t∗)| =
∣∣∣ t0∫
t∗

Π0(t)M0(t) dt
∣∣∣ 6 max |M0|

t0∫
t∗

j∏
k=0

|t− tk|βk dt→ 0

as r → 0. Thus, lk → 0 as r → 0 (k = 1, j).
It is conclusively established that, if r = (tj − ti) → 0, then | ln lk| → ∞, i.e., there arises a contradiction

with condition (5) of the simple polygon P . Theorem 1 is proved.
Theorem 2 (of local uniqueness). If the solution of Eq. (4) exists, then g(u, α) ∈ C2[Ω×G] and this solution

is locally unique, i.e.,
Dg(u, α)
Du

= {gij} 6= 0,∞, gij =
∂gi
∂uj

, (u, α) ∈ (Ω×G). (10)

Proof. Differentiability of lk = gk(u, α) with respect to arguments being represented in the form (2) is
established in [4], and it is readily checked directly for representation (3).

Relation (10) is proved following the procedure suggested in [4]. We calculate the variation δl = δg(u, α) of
the vector l ∈ Rn by means of the variation δu of the sought solution u ∈ Rn for fixed α ∈ G(δ): δl = (Dg/Du)δu.
Let δu 6= 0; we calculate δz for δl = 0:

δz =

ζ∫
−1

Π(ζ)Ω(ζ, δu) dζ, Ω =
∑
k

[
(1− αk)(ζ − tk)−1M(ζ) +

∂M

∂tk

]
δtk.

It is readily verified that dδz/dζ satisfies the boundary-value problem

arg
dδz

dt
= γkπ, t ∈ [tk, tk+1]; arg

dδz

dt
= 0, |t| > 1.

Consequently, we have

δz =
n+1∏
k=0

(ζ − tk)αk−εkQp(ζ), Qp =
p∑
k=0

ckζ
k

(εk = 0 for δtk = 0 and εk = 1 at δt 6= 0). On comparing the obtained solution δz of the boundary-value problem
with δz calculated above in the vicinity of ζ = ∞, we obtain Qp ≡ 0 and, therefore, δz = 0. Then, from the
representation for δz, we find Ω(ζ) ≡ 0, hence δuk = 0, from which there follow relations (10). Theorem 2 is proved.
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4. INITIAL POLYGON

Consider the polygon P∗ =
3⋃
k=1

P k∗ : P 1
∗ = {z: x = 0, y > 0}, P 3

∗ = {z: x = −H, y < yn}, P 2
∗ = {z: z = −H1,

−∞ < y <∞}, H1 > H. At the point zk (k = 0, n+ 1), the angles are αkπ = π, and at the point zn, the angle is
αnπ = 2π. Then, in (1), we have

Π(ζ) = [(ζ − τ2)(ζ − τ3)]−1(ζ − tn), |Π0| =
4∏
k=1

|t− τk|−1/2.

Let us fix τ1 = −1, τ2 = 0, and τ4 = 1 and seek for τ3 from the equation

H =

τ3∫
0

[(1− t2)(τ3 − t)t]−1/2 dt.

In the integral, we substitute the variables t = τ3(1− σ):

H =

1∫
0

[1− τ2
3 (1− σ)2]−1/2[σ(1− σ)]−1/2 dσ ≡ U(τ3).

By construction, we have dU/dτ3 > 0, U(0) =

1∫
0

[σ(1−σ)]−1/2 dσ ≡ H0, and U(1) =∞. Let us fix H > H0. Then,

from the equation H = U(τ3), the constant τ3 (τ2 = 0 < τ3 < 1 = τ4) is uniquely defined.
Let us now present the specified quantity H2 = H1 −H > 0 in the form

H2 = π
∣∣∣dz
dζ

(ζ − τ3)
∣∣∣
ζ=τ3

, H2 = πτ−1
3 (tn − τ3)|M(τ3)| ≡ X(tn) [M(τ3) = ϕ(tn)].

We have dX/dtn > 0, X(τ3) = 0, and X(τ4) = ∞. Therefore, the equation H2 = X(tn) is uniquely solvable with
respect to tn and τ3 < tn < τ4. Thus, the conformal mapping z = F∗(ζ), F∗: E → D0, ∂D0 = P0 ∪ L∗ is uniquely
defined.

Let us arbitrarily fix the points tk, t0 = −1 < t1 < . . . < ts = τ2 < . . . < tm = τ3 < . . . < tn+1 = 1 and find
their images zk = F∗(tk), k = 0, n+ 1. Based on the points zk, we construct system (2), (3) uniquely solvable by
construction (αk = 0, k = 1, n− 1).

5. UNIQUE SOLVABILITY OF THE EQUATION l = g(u,α)

Theorem 3 (of existence and uniqueness). Equation (4) corresponding to the simple polygon P ⊂ G(δ)
and, consequently, the original problem of the filtration theory are uniquely solvable.

Proof. Proof of the theorem, by virtue of Theorems 1 and 2, follows from the convergence of the continuity
method [4, p. 122]. To apply this method, we connect the apices of the initial polygon P∗ constructed in Sec. 4
with the respective apices of the original polygon P by smooth nonintersecting curves Sk (k = 0, n+ 1). By
arbitrarily choosing points zk(Sk) on these curves and connecting them by straight-line segments, we obtain a
family of polygons {P (S)} [S = (S0, . . . , Sn+1)] with interior angles αkπ and lengths of the sides lk (k = 0, n+ 1)
[lk for k = s, s + 1, m are calculated by formulas (3)]. By construction, P (S) ∈ G(δ). Further, the continuity
method consists in the successive proof of unique solvability of Eq. (4) using the theorem of implicit functions for
the polygons P (S) starting from P∗ continuously deformable along S. By the theorem of uniqueness for the initial
polygon, it also holds true for all the polygons P (S) including the initial polygon P [4, p. 122–123]. Theorem 3 is
proved.

Further, several particular problems are studied.

6. FILTRATION FLOW OF UNDERGROUND WATER ALONG AN
INCLINED CONFINING STRATUM UNDER A HORIZONTAL DRAIN

The filtration scheme is shown in Fig. 2 borrowed from [5, p. 231]. The upstream and downstream depths
and discharges of the flow are equal to h, Q, and h1, Q1 respectively. The domains D∗ of the complex potential
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Fig. 2

Fig. 3

ω = ϕ+ iψ are shown in Fig. 3, and the correspondence of the boundary points of conformal mappings Z: E → D

and ω: E → D∗ is shown in Fig. 2 (tj are the preimages of the points Mj , j = 0.6).
We retain here the notation of variables related to the variables z and w by the formulas Z = −iz and

ω = kw (k is the permeability coefficient), which were used in the monograph [5, p. 231–239].
Depending on the position of the flow branching point M0, where the flow rate is zero, let us consider three

flow schemes described in [5, p. 233–239].
1. Volumetric liquid inflow to the drain (discharge Q > Q1, branching point M0 is on the right-hand branch

of the free boundary M5M4) (see Figs. 2 and 3a).
2. Filtration liquid outflow from the drain (channel) into the ground (M0 ∈M6M1 and Q < Q1) (see Figs. 2

and 3b).
3. Inflow of the groundwater in the upper part of the drain; in the lower part of the drain, the liquid leaks

(seeps) from the drain into the ground (M0 lies on the drain M3M2 and Q > Q1) (see Figs. 2 and 3c).
It is assumed that there are points M2 and M3 on the drain with angles at them equal to 2π in flow schemes

1 and 3 (see Fig. 2). We fix the constants t6 = 0, t2 = 1, and tm0 (m = 1, 2, 3) (the superscript m indicates the
number of the flow scheme) assuming that t20 = −1, t30 = (t2 − t3)/2, and t10 = (t4 − t5)/2.

The functions dωm/dζ, ωm : E → D∗m and dZm/dζ, Zm: E → D are represented in the form
dωm

dζ
= K(ζ − tm0 )[(ζ − t6)(ζ − t5)]−1(ζ − t4)−1/2 = Πm

0 (ζ),

dZm

dζ
= −Π(ζ)

π

∫
Ω

σ|Πm
0 (t)| dt

Π(t)(t− ζ)
, Π = (ζ − t2)(ζ − t3)(ζ − t6)α−2(ζ − t5)−1−α,

where Ω = (−∞, 0) ∪ (t5, t4), K = K(Q0, Q1) is a given constant [5, p. 233], σ = sign (dy/dt), and t ∈ Ω. On
the assumption that the upstream and downstream depths hm0 and hm1 are given, we calculate the discharges Qm0
and Qm1 : Qmj = Khmj sin (απ) cos (απ), j = 0, 1 [5, pp. 234–235]. We have Qm0 > Qm1 (m = 1, 3) in schemes 1 and 3,
and Q2

0 < Q2
1 in scheme 2 (see Fig. 3).
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The constants t3, t4, and t5 are calculated from the following system of equations:

b1 =

∞∫
t4

∣∣∣dZm
dt

∣∣∣ dt, πQmj = |Πm
0 (ζ)(ζ − t6−j)|ζ=t6−j , j = 0, 1. (11)

Here b1 = |Z(t1)− Z(t4)| is the drainage length (see Fig. 2) and discharges Qmj are given quantities.
Theorem 4. Problems 1–3 of liquid filtration to the drain in the presence of an inclined water-confining

stratum are uniquely solvable, and the solutions (t3, t4, and t5) of system (11) corresponding to them satisfy the

inequalities

tk − tk+1 > ε > 0, k = 2, 3, 4, 5. (12)

Proof. Proof of the theorem statements, as previously, follows from the correctness of the a priori esti-
mates (12). Let us write out two last equations of (11) in detail:

πQm0 = K|t6 − tm0 |(t5 − t6)−1(t4 − t6)−1/2, πQm1 = K|t5 − tm0 |(t5 − t6)−1(t4 − t5)−1/2.

If t5 → t6 = 0 or t4 → t5, then Qmj → ∞ (j = 0, 1), which proves inequalities (12) for k = 4 and 5. To prove the
remaining inequalities of (12), let us consider several cases, as in Sec. 3.

Assumptions: t2 − t3 = r → 0 and t3 − t4 > ε > 0. Then, we have

b1 6 b =

t2∫
t3

∣∣∣dZm
dt

∣∣∣ dt = r3

1∫
0

Λ(s, r) ds→ 0 at r → 0.

Here the variables t = sr+ t3, s ∈ [0, 1] are replaced in the integral, and it is taken into account that

1∫
0

Λ(s, r) ds 6

N0 <∞.
Assumptions: t3 − t4 = r → 0 and t2 − t3 > ε > 0. Then, we have

I ≡
t4∫
t5

σ|Π0(t)| dt
Π(t)(t− ζ)

→∞ at r → 0, s ∈ (−∞,∞),

since |Π0(t)| |Π−1(t)| 6 K1|t3 − t|−3/2 at t4 = t3. Here

|z∗ − z2| =
t2∫
t∗

∣∣∣dZm
dt

∣∣∣ dt→∞ as r → 0, t∗ ∈ [t3, t2).

In particular, for the constant t∗ corresponding to the point z∗ = Z(t∗) = b1 on the drain M3M2, it also follows
that z∗ = b1 →∞.

Assumption: t2 − t4 = r → 0.
In this case, also I →∞ and, thus, z∗ →∞.
The obtained contradictions to the inequality | ln b1| <∞ prove estimates (12) for k = 2, 3. The theorem is

proved.
Remark 1. In the monograph [5, p. 231–239], only the drain length b1 was considered as given, the constants

t6 = 0 and t5 = 1 were fixed, and t4 was derived from the first equation of (11). The presence of the points M2

and M3 with angles at them equal to 2π was not taken into consideration, and thus, the mapping Z: E → D was
independent of the constants t2 and t3. Equation (11) with respect to t4 > 0 was solved numerically in [5]. We
were the first to solve problems 1–3 in the direct formulation.

Remark 2. Similar treatment is applied to the case where, in the vicinity of the infinite points M5 and M6,
the branches of free boundaries emanating from of M1 and M4 can reach the impermeable top of the water-bearing
stratum — segments of the straight lines M5M

∗
5 and M6M

∗
6 parallel to the confining bed M6M5. At the same

time, the specified segments of the straight lines M5M
∗
5 and M6M

∗
6 and confining bed M6M5 can be substituted

for the polygon P with the apices zk (k = 0, n+ 1), where zs = ∞ corresponds to the point M6, and zm = ∞
(m > s) corresponds to the point M5.
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Fig. 4

7. FILTRATION LIQUID FLOW FROM A CHANNEL
INTO AN INCLINED CONFINING BED

Similar problems were studied in the monograph [5, p. 147, 167]; schemes of the filtration-flow domain are
shown in Fig. 4.

7.1. Liquid Filtration from a Rectilinear Channel into a Horizontal Water Intake above a
Inclined Confining Bed (Fig. 4a). In this problem, the channel bottom P1 = {z : x = 0, 0 < y < y1} and
drainage P5 = {z: x = −H, y ∈ (y4, y5) ∪ (y6, y5)} are equipotentials, ϕ = 0 and ϕ = H, respectively. The axis
of symmetry P2 = {z: −H1 = x2 < x < 0, y = y1 > 0} and the confining bed P3 = {z: −∞ < x < −H1,
y − y2 = (x+H1) cot (γπ)} are a streamline ψ = 0; the free boundary L and the top of the water-bearing stratum
P4 = {z: x = −H, −∞ < y < y4} are also streamlines ψ = Q and ψ = Q1 < Q, Q and Q1 are the sought liquid
discharges.

In the plane of the complex potential w = ϕ+ iψ, to the domain D (∂D = L ∪ P , where P =
5⋃
1

Pk) there

corresponds a half-band with a step D∗ with the apices wk and angles γkπ at them: w0 = iQ, w1 = 0, w2 = ϕ2,
w3 =∞, w4 = H+ i(Q−Q1), w5 = H+ iψ5, w6 = H+ iQ; γ0 = γ1 = γ6 = 1/2, γ2 = γ5 = 1, γ3 = 0, and γ4 = 3/2.

The derivatives dw/dζ (w: E → D∗) and dz/dζ (z: E → D) are represented in the form

dw

dζ
= Keiβπ

6∏
k=0

(ζ − tk)γk−1 ≡ Π0(ζ),
dz

dζ
= Π(ζ)M(ζ),

(13)

Π =
6∏
k=0

(ζ − tk)αk−1, M =
1
πi

1∫
−1

|Π0(t)| dt
Π(t)(t− ζ)

,

where α0 = α6 = 1, α1 = 1/2, α2 = 1/2 + γ, α3 = −γ, α4 = 1 − γ, and α5 = 2. The constants K = 1, t0 = 1,
t6 = −1, and tk = 1 + k (k = 4, 5) are fixed, and the constants t1, t2, and t3 and t5 ∈ (t4, t5) are found from the
system of equations

lk =

tk∫
tk−1

∣∣∣dz
dt

∣∣∣ dt, k = 1, 2; l =

t5∫
t4

∣∣∣dz
dt

∣∣∣ dt, H =

1∫
−1

|Π0(t)| dt. (14)

Here the quantities H, l1, l2, and l are given: H = |w6 − w0|, l1 = |z1 − z0| = y1, l2 = |z2 − z1| = H1, the length
of the drainage slot is l = |z5 − z4|; y5 ∈ (y4, y5) (z5 = z6). Note that the ordinates yk of the points zk (k = 4, 5, 6)
are not fixed.

A priori estimates of the solution of system (14) 0 < ε 6 tk+1−tk (k = 0, 3) and 0 < ε 6 |t5−tk| (k = 3, 4, 5)
are established in the same way as in Sec. 3. From these estimates and the results of [1], there follows the unique
solvability of the original problem.

77



7.2. Liquid Filtration from a Rectilinear Channel into an Inclined Confining Bed. Analogous
problems are studied in [6, pp. 308, 318, and 331] for the case of a horizontal water-confining stratum and in [5,
p. 167] for the case of its absence.

The channel bottom P1 = {z: x = 0, 0 < y < y1} is an equipotential ϕ = 0, the axis of symmetry P2 = {z:
−H < x < 0, y = y1} and the confining bed P3 = {z: −∞ < x < −H, y − y2 = (x+H) cot (γπ)} are a streamline
ψ = 0; on the free boundary L, we have ψ = Q, which is the sought liquid discharge.

To the filtration domain D (∂D = P ∪ L, where P =
3⋃
1

Pk) in the plain w = ϕ + iψ, there corresponds a

half-band D∗ with the apices wk and angles γkπ at them: w0 = iQ, w1 = 0, w2 = H, w3 = ∞, γ0 = γ1 = 1/2,
γ2 = 1, γ3 = 0.

The derivatives of the conformal mappings w: E → D∗ and z: E → D are represented in the form (13),
where the products Π are taken Π0 in the range from 0 to 3; and α0 = 1, α1 = 1/2, α2 = 1/2 + γ, and α3 = 1− γ.

The constants K = 1, t0 = 1, and t3 = −1 are fixed, and t1 and t2 are found from the following system of
equations of the form (14):

lk = |zk − zk−1| =
tk∫

tk−1

∣∣∣dz
dt

∣∣∣ dt, k = 1, 2.

A priori estimates 0 < ε 6 tk+1 − tk 6 ε−1 (k = 0, 1) and unique solvability are proved similarly to Secs. 3
and 6.

Note, in the vicinity |ζ − t3| 6 1 of the point t3, there holds the inequality |M(ζ)(ζ − t3)1−γ | 6 N <∞,
hence, |dz(ζ− t3)/dζ| 6 N0 <∞, which corresponds to the zero angle ∂D at the point z3 =∞ (L and the confining
bed P3 are parallel for z →∞).

7.3. Channel Bottom and Confining Beds As Arbitrary Polygonal Boundaries. Figure 4 shows
the case of a trapezoidal channel bottom studied in [5, p. 167–181] in the absence of a confining bed. All the
calculations in Secs. 3 and 6 hold true for this case, too. At the same time, the form of the derivative dw/dζ is
unchanged, and the product Π(ζ) for the domain D shown in Fig. 4a is represented as

Π(ζ) =
6∏
k=2

(ζ − tk)αk−1Π∗(ζ), Π∗ =
(ζ − t1
ζ − t0

)α
(ζ − t2)−1/2 (k = 2, 6)

(αk are the same as in Sec. 7.1); for the domain D in Fig. 4b, it has the form

Π(ζ) =
3∏
k=2

(ζ − tk)αk−1Π∗(ζ)

(α2 and α3 are the same as in Sec. 7.2). The constants tk (k = 1, 2) are the preimages of the points zk = z(tk).
Moreover, the results obtained in Secs. 3–7 are also valid for the case where the channel bottom and confining

beds have the form of polygons with a finite number of apices.
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