LIQUID FILTRATION IN AN UNBOUNDED WATER-BEARING STRATUM WITH AN INCLINED CONFINING BED

E. V. Gubkina and V. N. Monakhov ${ }^{1}$

UDC 517.958.532

Abstract

Polubarinova-Kochina, Numerov, and other authors paid much attention to filtration problems of a heavy incompressible liquid in inclined water-bearing strata. In this work, therefore, classical schemes of liquid filtration on inclined confining beds are considered along with the general problem of filtration for arbitrary polygonal impermeable walls of a water-bearing stratum. In doing so, we also consider direct problems of physical and geometrical parameters of filtration flows.

Key words: liquid filtration, analytical function, a priori estimates, solvability, local uniqueness.

1. GENERAL PROBLEM OF FILTRATION

We start from the general problem of liquid filtration in an unbounded porous layer studied in [1] assuming that the angles $-\alpha_{s} \pi$ and $-\alpha_{m} \pi$ at the apices $z_{s}=\infty$ and $z_{m}=\infty$ of the polygon P formed by infinite segments $P_{k}^{*}, P_{k+1}^{*}(k=s, m)$ are arbitrary, i.e., $\alpha_{s} \neq 0$ and $\alpha_{m} \neq 0$ (Fig. 1).

The filtration domain D is bounded by a free (unknown) boundary L and by a specified polygon P formed by permeable walls of a water-bearing stratum (P^{1} and P^{3}), an impermeable top of the water-bearing stratum adjoining to them $\left(P_{0}^{1} \cup P_{0}^{3}\right), P_{0}^{k} \cap P^{k}=z_{0}^{k}(k=1,3)$, and an impermeable foot of the water-bearing stratum P^{2}.

We direct the x axis opposite to the vector of gravity acceleration and assume that $z=x+i y$. Let us denote the apices of the polygon P by $z_{k}(k=\overline{0, n+1})$, the angles at them by $\alpha_{k} \pi$, and the lengths of finite segments of the polygon P by $l_{k}=\left|z_{k}-z_{k-1}\right|$. The points $z_{0}^{k}(k=1,3)$ are also apices of the polygon $P: z_{0}^{1}=z_{s_{0}}\left(0<s_{0}<s\right)$ and $z_{0}^{3}=z_{m_{0}}\left(m<m_{0}<m\right)$.

Let $z_{s}=P_{0}^{1} \cap P^{2}$ and $z_{m}=P^{2} \cap P_{0}^{3}(0<s<m<n+1)$ be points at infinity upstream and downstream, respectively $\left(z_{m}=z_{s}=\infty\right)$.

For each of the infinite segments P_{s} and P_{s+1} ending at the points $\left(z_{s-1}, z_{s}\right),\left(z_{s}, z_{s+1}\right)$ and segments P_{m} and P_{m+1} ending at the points $\left(z_{m-1}, z_{m}\right),\left(z_{m}, z_{m+1}\right)$, we fix two finite points $\left(z_{s-1}^{*}, z_{s}^{*}\right),\left(z_{s+1}^{*}, z_{s+2}^{*}\right)$ and $\left(z_{m-1}^{*}, z_{m}^{*}\right)$, $\left(z_{m+1}^{*}, z_{m+2}^{*}\right)$ and include them into the number of apices of P with angles at them equal to π.

An analytical function $w(z)=\varphi+i \psi(z=x+i y)$ is sought in the domain D as the complex potential of filtration.

In the plane of the complex potential $w=\varphi+i \psi$, to the filtration domain D there corresponds a benched band D^{*} bounded by the straight lines $\psi=$ const and $\varphi=$ const: $\{-\infty<\varphi<\infty, \psi=0\} \equiv w\left(P^{2}\right)$ (the image of the confining bed $\left.P^{2}\right) ;\left\{\varphi<\varphi_{s_{0}}, \psi=Q_{s}\right\} \equiv w\left(P_{0}^{1}\right),\left\{\varphi=\varphi_{0}, Q_{s}^{-}<\psi<Q_{s}^{+}\right\} \equiv w\left(P^{1}\right),\left\{\varphi_{0}<\varphi<\varphi_{n+1}\right.$, $\left.\psi=Q_{0}\right\} \equiv w(L),\left\{\varphi=\varphi_{n+1}, Q_{m}^{-}<\psi<Q_{m}^{+}\right\} \equiv w\left(P^{3}\right)$, and $\left\{\varphi_{n+1}<\varphi, \psi=Q_{m}\right\} \equiv w\left(P_{0}^{3}\right)$. Here $\varphi_{k}=\operatorname{Re} w_{k}$ are the given values of bottom drive, $Q_{j}^{-}=\min \left(Q_{0}, Q_{j}\right)$ and $Q_{j}^{+}=\max \left(Q_{0}, Q_{j}\right)(j=s, m), Q_{0}, Q_{s}$, and Q_{m} are the sought values of water discharge under a dam $\left(Q_{0}\right)$ and at the upper $\left(Q_{s}\right)$ and lower $\left(Q_{m}\right)$ infinite apices z_{s} and z_{m} of the porous layer. The given scheme of the filtration flow determines the values of the angles $\gamma_{j} \pi$ at the finite apices $w_{j} \in \partial D^{*}(j=0, n+1, s-1, m+1)$ equal to $\pi / 2$ or $3 \pi / 2$. Here, the conditions

$$
\gamma_{0}+\gamma_{s-1}=\gamma_{n+1}+\gamma_{m+1}=2
$$

[^0]

Fig. 1
must be satisfied, which, in particular, determine the relation between the sought discharges Q_{0}, Q_{s}, and Q_{m}. For example, we have $Q_{0}>Q_{s}$ for $\gamma_{0}=1 / 2$ and $Q_{0}<Q_{s}$ for $\gamma_{0}=3 / 2$. Other types of domains D^{*} are considered in the following sections.

In accordance with the geometry of the domains D and D^{*}, the representations for derivatives of conformal mappings $z: E \rightarrow D$ and $w: E \rightarrow D^{*}(E: \operatorname{Im} \zeta>0)$ take the form [1, 2]

$$
\begin{equation*}
\frac{d z}{d \zeta}=\frac{\Pi(\zeta)}{\pi i} \int_{|t|>1} \frac{\left|\Pi_{0}(t)\right| d t}{\Pi(t)(t-\zeta)}, \quad \Pi(\zeta)=\prod_{k=0}^{n+1}\left(\zeta-t_{k}\right)^{\beta_{k}}, \quad \frac{d w}{d \zeta}=\prod_{j=0}^{5}\left(\zeta-\tau_{j}\right)^{\gamma_{j}-1} \tag{1}
\end{equation*}
$$

Here $\beta_{k}=\alpha_{k}-1$ and $\alpha_{k} \pi$ are the interior angles at the apices and ends $z_{k}(k=\overline{0, n+1})$ of the polygon P $\left(z_{s}=z_{m}=\infty, \alpha_{s} \leqslant 0, \alpha_{m} \leqslant 0\right.$, and $\left.0 \leqslant s<m \leqslant n+1\right), t_{k}$ are the preimages of $z_{k}=z\left(t_{k}\right), \tau_{j}$ are the preimages of the apices $w_{j}=w\left(\tau_{j}\right)$ of the polygon ∂D^{*}, coinciding with part of $t_{k}, \gamma_{j}=1 / 2$ and $3 / 2(j \neq s, m)$ and $\gamma_{s}=\gamma_{m}=0$. Let us fix the constants $t_{0}=-1$ and $t_{n+1}=1$.

2. SYSTEM OF EQUATIONS FOR PARAMETERS

If the vector $T=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in R^{n}$ of unknown constants $t_{k}(k=\overline{1, n})$ in representation (1) is arbitrarily fixed, then the corresponding mapping $z=z(\zeta, T), z: E \rightarrow D(T)$ transfers the segment $[-1,1]$ to the polygon $P(T)$ with the sides parallel to the sides of the given polygon P. Let us construct a system of equations relative to the vector T, whose solution secures the equality $P(T)=P$.

We assume that $z_{0}=0$ and specify the lengths $l_{k}=\left|z_{k}-z_{k-1}\right|$ of the finite segments of the polygon P :

$$
\begin{equation*}
l_{k}=\int_{t_{k-1}}^{t_{k}}|\Pi(t)||M(t)| d t \quad(k=\overline{1, n}, k \neq s, m) \tag{2}
\end{equation*}
$$

Since the point $z_{0}=0$ is fixed on the polygon $P^{1} \cup P_{0}^{1}$, the corresponding conditions (2) completely specify the position of this point. Similarly, to fix the position of the polygons P^{2} and $P^{3} \cup P_{0}^{3}$, let us specify in them the coordinates of the points z_{s+1} and z_{m+1}. Since the boundary condition on the free boundary preimage yields

$$
\left|x\left(t_{n+1}\right)-x\left(t_{0}\right)\right|=\left|\varphi_{n+1}-\varphi_{0}\right|=H \quad(|\ln H| \leqslant N<\infty)
$$

the value of $\left|x\left(t_{n+1}\right)\right|=\left|\operatorname{Re} z_{n+1}\right|=H$ is given. Therefore, to determine the position of the polygons P^{2} and $P^{3} \cup P_{0}^{3}$, it is sufficient that the following equations should be satisfied:

$$
\begin{equation*}
l_{s}+i l_{s+1}=\int_{t_{s-1}}^{t_{s+1}} \frac{d z}{d \zeta} d \zeta, \quad l_{m}=\operatorname{Im} \int_{t_{0}}^{t_{n+1}} \frac{d z}{d \zeta} d \zeta \tag{3}
\end{equation*}
$$

We assume that $u_{k}=t_{k}-t_{k-1}(k=\overline{1, n+1})$ and introduce the vector $u=\left(u_{1}, \ldots, u_{n}\right) \in R^{n}$, in terms of which the vector $T=\left(t_{1}, \ldots, t_{n}\right) \in R^{n}$ is uniquely determined. Then, the vector $u \in R^{n}$ is a solution of the functional equation

$$
\begin{equation*}
l=g(u, \alpha) \tag{4}
\end{equation*}
$$

where l_{k} and $l=\left(l_{1}, \ldots, l_{n}\right)$ are represented as (2) or (3); $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n+1}\right)$. According to formulas (4) to each fixed vector $u=\left(u_{1}, \ldots, u_{n}\right), u_{k} \neq 0$ there corresponds a polygon $P(u)$ coinciding with P only when (4) with the given l_{k} corresponding to P is satisfied. In this case, the polygons $P(u)$, generally speaking, are multivalent, and some of their segments can have external self-intersection. To take this possibility into account, we introduce some definitions. Let us put infinite segments $P_{0}=\{z: \operatorname{Re} z=0, \operatorname{Im} z<0\}$ and $P_{n+2}=\left\{z:|\operatorname{Re} z|=H, \operatorname{Im} z<\operatorname{Im} z_{n+1}\right\}$ from the points z_{0} and z_{n+1}, replacing the unknown curve L, and construct a polygon $\bar{P}=P \cup P_{0} \cup P_{n+2}$.

Let us call the vector $p=(l, \alpha) \in R^{2 n+1}$ the geometric characteristics of the polygon P (polygon \bar{P}) and impose the following conditions on (l, α) :

$$
\begin{gather*}
0<\delta \leqslant \alpha_{k} \leqslant 2, \quad k \neq s, m, \quad\left|\ln l_{k}\right| \leqslant \delta^{-1} \quad(k=\overline{1, n}) \tag{5}\\
-1 / 2+\delta \leqslant\left(\alpha_{s}, \alpha_{m}\right) \leqslant 0, \quad 1 / 2 \leqslant \alpha_{0} \leqslant 3 / 2-\delta, \quad \alpha_{n+1}=1
\end{gather*}
$$

Condition (5) imposed on the slope angle $\alpha_{0} \pi$ at the point $z_{0}=0$ and the equality $\alpha_{n+1}=1$ maintain the boundedness of $M(\zeta)$ in (1) for $\operatorname{Im} \zeta>0$.

Let the following inequalities be satisfied for every curve $P_{i j} \subset D_{0}, \partial D_{0}=\bar{P}$ with the ends on non-adjoining segments $\left(P_{i}, P_{j}\right) \in \bar{P}$:

$$
\begin{equation*}
\left|P_{i j}\right| \geqslant \delta>0, \quad|i-j| \geqslant 2 \tag{6}
\end{equation*}
$$

If the domain D_{0} is nondegenerate, then the derivative of the conformal mapping $Z: E \rightarrow D_{0}$ is to be represented in the form

$$
\begin{equation*}
\frac{d Z}{d \zeta}=C \Pi(\zeta), \quad C=\mathrm{const}, \quad Z: E \rightarrow D_{0} \tag{7}
\end{equation*}
$$

Polygons P (polygons \bar{P}), for which assumptions (5)-(7) are fulfilled will later be called simple, and the class of simple polygons will be denoted by $G(\delta)[P \subset G(\delta)$ or $p=(l, \alpha) \in G(\delta)]$.

The simple polygons $P \subset G(\delta)$ and the polygons \bar{P} corresponding to them, generally speaking, are multivalent and admit external self-intersections of nonadjoining segments, i.e., P and \bar{P} may lie on the Riemann surfaces of the zeroth kind.

3. A PRIORI ESTIMATES AND LOCAL UNIQUENESS OF THE SOLUTION

Theorem 1 (on a priori estimates). Let Eq. (4) for $(l, \alpha) \in G(\delta)$ have a solution $u=\left(u_{1}, \ldots, u_{n}\right) \in R^{n}$, $u_{k}>0$. Then, the following inclusion is fulfilled (a priori estimates):

$$
\begin{equation*}
u \in \Omega=\left\{u: 0<\varepsilon(\delta) \leqslant u_{k}, k=\overline{1, n}\right\} \tag{8}
\end{equation*}
$$

Proof. We start to prove estimates (8) from verifying their correctness for the parameters τ_{k} of the conformal mapping $w: E \rightarrow D^{*}$:

$$
\begin{equation*}
\left|\tau_{j+1}-\tau_{j}\right| \geqslant \varepsilon>0, \quad j=\overline{0,5}\left(\tau_{6}=\tau_{0}\right) \tag{9}
\end{equation*}
$$

Inequalities (9) ensure nondegeneracy of the domain D^{*} and are proved by the method of the extremal lengths of the family of curves [3].

Let us consider the filtration domain D (Fig. 1) as a "tetragon" with the apices $z_{0}, z_{n+1}, z_{0}^{1}, z_{0}^{3}$, and z_{m+1}^{*} and map conformally the domain D^{*} onto the rectangle Ω in the auxiliary plane W ($W: D^{*} \rightarrow \Omega$) with the apices $W_{k}=W\left(w_{k}\right), w_{k}=\left\{w_{0}, w_{n+1}, w_{0}^{1}, w_{0}^{3}\right\}$.

First of all, note that the module of the "tetragon" $D(\bmod D)$ with a pair of the opposite "sides" L and $\Gamma=\left(P^{2} \cup P_{0}^{1} \cup P_{0}^{3}\right)$ is equal to the module of the rectangle Ω by virtue of the conformality of the mapping $W=W(z), W: D^{*} \rightarrow \Omega$. To estimate $\bmod D$, it is sufficient to determine the extremal length $\lambda(\omega)$ of the family of curves $\{\omega\}$ connecting L and Γ. Along with $\{\omega\}$, we consider the family of curves $\left\{\omega^{*}\right\}$ connecting the "sides"
$P_{0} \cup P_{n+2}$ and Γ of the polygon $\bar{P}, D \subset D(\bar{P})\left(P_{0}\right.$ and P_{n+2} are the rays emanating from the points z_{0} and $\left.z_{n+1}\right)$. Let us draw a segment of the straight line $x=x_{n+1}$ from the point z_{n+1} until it intersects $P^{1} \cup \Gamma$ at the point $z_{*} \in\left(P^{1} \cup \Gamma\right)$ (if there is no intersection, $\left.z_{*}=\infty\right)$.

We assume that $L_{*}=\left\{x=x_{n+1}, y_{n+1}<y<\bar{y}\right\}$ and $P_{*}^{1}=\left\{x=x_{n+1}, \bar{y}<y<y_{*}\right\}, \bar{y}=\left(y_{*}-y_{n+1}\right) / 2$. The domain obtained is denoted by $D_{*} \subset D$.

If $z_{*} \in P^{1}$, then we take $\Gamma_{*}=\Gamma$ as the side opposite to L_{*}. For $z_{*} \in \Gamma$, we have $\Gamma_{*}=\Gamma \backslash l_{*}$, where $l_{*} \subset P_{0}^{1}$ is part of the segment P_{0}^{1} from the point z_{*} to the point z_{0}^{1}.

Consider the family of curves $\left\{\omega_{*}\right\}$ connecting Γ_{*} and L_{*} in the domain $D_{*} \subset D$. The modules $\lambda(\omega), \lambda\left(\omega^{*}\right)$, and $\lambda\left(\omega_{*}\right)$ of these families are related as follows:

$$
0<\lambda\left(\omega_{*}\right) \leqslant \lambda(\omega)=\bmod D=\bmod D^{*}<\lambda\left(\omega^{*}\right)<\infty .
$$

By virtue of the fact that the "tetragons" D_{*} and $D(\bar{P})$ are fixed, the values of $\lambda\left(\omega_{*}\right)$ and $\lambda\left(\omega^{*}\right)$ can be obtained explicitly. The estimates obtained for $\lambda(\omega)$ imply the nondegeneracy of the polygon ∂D^{*}, which proves the correctness of estimates (9).

To prove estimates (8) for the remaining $u_{k}=t_{k}-t_{k-1}(k=\overline{1, n})$, let us assume the opposite, namely, that part of u_{k} may tend to zero, i.e., the constants t_{k} corresponding to them converge: $\left|t_{k+1}-t_{k}\right| \rightarrow 0$. Let, for the time being, the converging parameters t_{k} not include $t_{0}=-1$ and $t_{n+1}=1$, i.e., $t_{k}, 1 \leqslant i \leqslant k \leqslant j \leqslant n$ converge. By virtue of (9), the constants $t_{s}=\tau_{2}$ and $t_{m}=\tau_{3}$ cannot simultaneously be among the converging parameters. Therefore, let us consider the case $z_{j} \neq \infty$ (while the possibility of $z_{i}=\infty$ is not excluded), representing $l_{j}=\left|z_{j}-z_{j-1}\right|$ in the form

$$
l_{j}=\int_{t_{j}}^{t_{j+1}} \prod_{k=i}^{j}\left|t-t_{k}\right|^{\beta_{k}}\left|M_{j}(t)\right| d t \quad\left(\beta_{k}=\alpha_{k}-1, k=\overline{0, n+1}\right) .
$$

Here $\left|M_{j}(t)\right|=\left|\Pi_{j}(t)\right||M(t)| \neq 0, \infty$ at $t \in\left[t_{j}, t_{j+1}\right)$ and $\left|\Pi_{j}(t)\right|=\prod_{k=0}^{i-1}\left|t-t_{k}\right|^{\beta_{k}} \prod_{k=j+1}^{n+1}\left|t-t_{k}\right|^{\beta_{k}}$.
Let us assign all $\beta_{k}<0$ to Σ^{\prime} and all $\beta_{k} \geqslant 0(k=\overline{i, j})$ to $\Sigma^{\prime \prime}$ and assume that $\nu=-\Sigma^{\prime} \beta_{k} \mu=\Sigma^{\prime \prime} \beta_{k}$.
Assumptions: $\mu-\nu+1 \leqslant 0$ and $\left(t_{j}-t_{i}\right) \rightarrow 0(1 \leqslant i<j \leqslant n)$.
By the condition, t_{j+1} and t_{j} do not converge, consequently, there exists $\varepsilon>0$ such that $\varepsilon+t_{j}<t_{j+1}$. Since $\left|M_{j}(t)\right| \geqslant a \neq 0, t \in\left[t_{j}, t_{j}+\varepsilon\right) ; t-t_{j} \leqslant t-t_{k} \leqslant t-t_{i}$, then,

$$
l_{j}=\int_{t_{j}}^{t_{j+1}}\left|\frac{d z}{d t}\right| d t \geqslant \int_{t_{j}}^{t_{j}+\varepsilon}\left|\frac{d z}{d t}\right| d t \geqslant a \int_{t_{j}}^{t_{j}+\varepsilon}\left(t-t_{i}\right)^{-\nu}\left(t-t_{j}\right)^{\mu} d t .
$$

We substitute the variables in the last integral assuming that $t=r s+t_{j}$. Then, we obtain

$$
l_{j} \geqslant a r^{\mu-\nu+1} \int_{0}^{\varepsilon / r} s^{\mu}(1+s)^{-\nu} d s \rightarrow \infty \quad \text { at } \quad r=\left(t_{j}-t_{i}\right) \rightarrow 0,
$$

which contradicts conditions (5).
If $\mu-\nu+1=0$, we obtain in a similar way

$$
l_{j} \geqslant a \int_{0}^{\varepsilon / r} s^{\mu-\nu}\left(1+\frac{1}{s}\right)^{-\nu} d s \geqslant 2^{-\nu} a \int_{1}^{\varepsilon / r} \frac{d s}{s} \rightarrow \infty \quad \text { at } \quad r \rightarrow 0 .
$$

Assumptions: $\mu-\nu+1>0$ and $\left(t_{j}-t_{i}\right) \rightarrow 0(1 \leqslant i<j \leqslant n)$.
Let us construct a semicircle K_{r} of radius $r=t_{j}-t_{i}$ centered at the point $\zeta_{0}=\left(t_{j}+t_{i}\right) / 2$ in the upper half-plane $\operatorname{Im} \zeta>0$, choosing r sufficiently small for the inequalities $t_{i}-r / 2>t_{i+1}$ and $t_{j}+r / 2<t_{j+1}$ to be fulfilled. We have

$$
\left|M_{j}(\zeta)\right| \leqslant A<\infty, \quad \zeta \in K_{r} ; \quad r / 2 \leqslant\left|\zeta-t_{k}\right| \leqslant 2 r, \quad \zeta \in K_{r}, \quad k=\overline{i, j} .
$$

Consider the curve $\Lambda_{r}=F\left(K_{r}\right) \subset D(F: E \rightarrow D)$ with the ends on the segments P_{i-1} and P_{j+1} of the polygon P. For $r \rightarrow 0$, the length $\left|\Lambda_{r}\right|$ tends to zero, and thus also $l_{k} \rightarrow 0(k=\overline{i, j})$:

$$
\left|\Lambda_{r}\right|=\left|\int_{K_{r}} \frac{d z}{d \zeta} d \zeta\right| \leqslant \pi r A\left|\Pi^{\prime}(\zeta)\right|\left|\Pi^{\prime \prime}(\zeta)\right| \leqslant A \pi r(2 r)^{\mu}\left(\frac{r}{2}\right)^{-\nu} \rightarrow 0
$$

Here only the powers $\beta_{k}<0$ enter into $\Pi^{\prime}=\Pi^{\prime}\left(\zeta-t_{k}\right)^{\beta_{k}}$ and all the $\beta_{k}>0(k=\overline{i, j})$ into $\Pi^{\prime \prime}$. Thus, the assumption that $r=\left(t_{j}-t_{i}\right) \rightarrow 0$ is incorrect, i.e., there can be found such $\varepsilon>0$ for which $\left(t_{j}-t_{i}\right) \geqslant \varepsilon>0$.

Similarly, we consider the case $z_{j}=\infty$ and $z_{i} \neq \infty$ with the side $l_{i}=\left|z_{i}-z_{i-1}\right|$ taken for $\mu-\nu+1 \leqslant 0$.
Therefore, we have simply to consider the case where only one of the parameters t_{0} or t_{n+1} is among the converging t_{k}, for example, $t_{0}=-1$, i.e., $\left(t_{j}-t_{0}\right) \rightarrow 0$. Note that $0<j<m$, since according to (9), $t_{m}-t_{s} \geqslant \varepsilon>0$. We assume that

$$
M_{0}(\zeta)=\left(\zeta-t_{0}\right)^{\alpha_{0}-1 / 2+\gamma} \Pi_{*}(\zeta) M(\zeta), \quad \Pi_{0}(\zeta)=\prod_{k=1}^{j}\left(\zeta-t_{k}\right)^{\beta_{k}}\left(\zeta-t_{0}\right)^{\bar{\beta}_{0}}
$$

where $\Pi_{*}(\zeta)=\Pi(\zeta) \Pi_{0}^{-1}(\zeta), \gamma_{0}=0$ for $\alpha_{0}>1 / 2$ and $0<\gamma_{0} \ll 1$ for $\alpha_{0}=1 / 2$, and $\bar{\beta}_{0}=-1 / 2-\gamma_{0}$ (below, the bar over β_{0} is omitted).

Let us assign all $\beta_{k}<0$ to Σ^{\prime} and all $\beta_{k} \geqslant 0(k=\overline{0, j})$ to $\Sigma^{\prime \prime}-\left(\beta_{0}=\bar{\beta}_{0}\right)$ and denote $\nu=-\Sigma^{\prime} \beta_{k}$ and $\mu=\Sigma^{\prime \prime} \beta_{k}$.

Assumptions: $\mu-\nu+1 \leqslant 0$ and $\left(t_{j}-t_{0}\right) \rightarrow 0(1 \leqslant j \leqslant m-1)$.
According to the choice of $\bar{\beta}_{0}=-1 / 2-\gamma_{0}$, we have $M\left(t_{0}\right) \neq 0, \infty$; therefore, the inclusion of t_{0} into the number of converging parameters does not complicate the proof in the case considered.

Assumptions: $\mu-\nu+1>0$ and $\left(t_{j}-t_{0}\right) \rightarrow 0(1 \leqslant j \leqslant m-1)$.
Similarly to the case $r=\left(t_{j}-t_{i}\right) \rightarrow 0, t \geqslant 1$, it is found that $\left|\Lambda_{r}\right|=\left|F\left(K_{r}\right)\right| \rightarrow 0$ as $r \rightarrow 0$, where $K_{r}=\{\zeta$: $\left.\operatorname{Im} \zeta>0,\left|\zeta-t_{0}-r / 2\right|=r\right\}$, and $F: E \rightarrow D$.

Since the image $z_{*}(r)$ of the point $t_{0}-r / 2=t_{*}(r) \in K_{r}$ lies at the free boundary L, it must be proved additionally that $z_{*}=F\left[t_{*}(r)\right] \rightarrow 0$ as $r \rightarrow 0\left[F\left(t_{0}\right)=0\right]$. Taking into account that $\sum_{k=0}^{j} \beta_{k}=\mu-\nu>-1$, we obtain

$$
\left|F\left(t_{*}\right)\right|=\left|\int_{t_{*}}^{t_{0}} \Pi_{0}(t) M_{0}(t) d t\right| \leqslant \max \left|M_{0}\right| \int_{t_{*}}^{t_{0}} \prod_{k=0}^{j}\left|t-t_{k}\right|^{\beta_{k}} d t \rightarrow 0
$$

as $r \rightarrow 0$. Thus, $l_{k} \rightarrow 0$ as $r \rightarrow 0(k=\overline{1, j})$.
It is conclusively established that, if $r=\left(t_{j}-t_{i}\right) \rightarrow 0$, then $\left|\ln l_{k}\right| \rightarrow \infty$, i.e., there arises a contradiction with condition (5) of the simple polygon P. Theorem 1 is proved.

Theorem 2 (of local uniqueness). If the solution of Eq. (4) exists, then $g(u, \alpha) \in C^{2}[\Omega \times G]$ and this solution is locally unique, i.e.,

$$
\begin{equation*}
\frac{D g(u, \alpha)}{D u}=\left\{g_{i j}\right\} \neq 0, \infty, \quad g_{i j}=\frac{\partial g_{i}}{\partial u_{j}}, \quad(u, \alpha) \in(\Omega \times G) . \tag{10}
\end{equation*}
$$

Proof. Differentiability of $l_{k}=g_{k}(u, \alpha)$ with respect to arguments being represented in the form (2) is established in [4], and it is readily checked directly for representation (3).

Relation (10) is proved following the procedure suggested in [4]. We calculate the variation $\delta l=\delta g(u, \alpha)$ of the vector $l \in R^{n}$ by means of the variation δu of the sought solution $u \in R^{n}$ for fixed $\alpha \in G(\delta): \delta l=(D g / D u) \delta u$. Let $\delta u \neq 0$; we calculate δz for $\delta l=0$:

$$
\delta z=\int_{-1}^{\zeta} \Pi(\zeta) \Omega(\zeta, \delta u) d \zeta, \quad \Omega=\sum_{k}\left[\left(1-\alpha_{k}\right)\left(\zeta-t_{k}\right)^{-1} M(\zeta)+\frac{\partial M}{\partial t_{k}}\right] \delta t_{k} .
$$

It is readily verified that $d \delta z / d \zeta$ satisfies the boundary-value problem

$$
\arg \frac{d \delta z}{d t}=\gamma_{k} \pi, \quad t \in\left[t_{k}, t_{k+1}\right] ; \quad \arg \frac{d \delta z}{d t}=0, \quad|t| \geqslant 1 .
$$

Consequently, we have

$$
\delta z=\prod_{k=0}^{n+1}\left(\zeta-t_{k}\right)^{\alpha_{k}-\varepsilon_{k}} Q_{p}(\zeta), \quad Q_{p}=\sum_{k=0}^{p} c_{k} \zeta^{k}
$$

$\left(\varepsilon_{k}=0\right.$ for $\delta t_{k}=0$ and $\varepsilon_{k}=1$ at $\left.\delta t \neq 0\right)$. On comparing the obtained solution δz of the boundary-value problem with δz calculated above in the vicinity of $\zeta=\infty$, we obtain $Q_{p} \equiv 0$ and, therefore, $\delta z=0$. Then, from the representation for δz, we find $\Omega(\zeta) \equiv 0$, hence $\delta u_{k}=0$, from which there follow relations (10). Theorem 2 is proved.

4. INITIAL POLYGON

Consider the polygon $P_{*}=\bigcup_{k=1}^{3} P_{*}^{k}: P_{*}^{1}=\{z: x=0, y>0\}, P_{*}^{3}=\left\{z: x=-H, y<y_{n}\right\}, P_{*}^{2}=\left\{z: z=-H_{1}\right.$, $-\infty<y<\infty\}, H_{1}>H$. At the point $z_{k}(k=0, n+1)$, the angles are $\alpha_{k} \pi=\pi$, and at the point z_{n}, the angle is $\alpha_{n} \pi=2 \pi$. Then, in (1), we have

$$
\Pi(\zeta)=\left[\left(\zeta-\tau_{2}\right)\left(\zeta-\tau_{3}\right)\right]^{-1}\left(\zeta-t_{n}\right), \quad\left|\Pi_{0}\right|=\prod_{k=1}^{4}\left|t-\tau_{k}\right|^{-1 / 2}
$$

Let us fix $\tau_{1}=-1, \tau_{2}=0$, and $\tau_{4}=1$ and seek for τ_{3} from the equation

$$
H=\int_{0}^{\tau_{3}}\left[\left(1-t^{2}\right)\left(\tau_{3}-t\right) t\right]^{-1 / 2} d t
$$

In the integral, we substitute the variables $t=\tau_{3}(1-\sigma)$:

$$
H=\int_{0}^{1}\left[1-\tau_{3}^{2}(1-\sigma)^{2}\right]^{-1 / 2}[\sigma(1-\sigma)]^{-1 / 2} d \sigma \equiv U\left(\tau_{3}\right)
$$

By construction, we have $d U / d \tau_{3}>0, U(0)=\int_{0}^{1}[\sigma(1-\sigma)]^{-1 / 2} d \sigma \equiv H_{0}$, and $U(1)=\infty$. Let us fix $H>H_{0}$. Then, from the equation $H=U\left(\tau_{3}\right)$, the constant $\tau_{3}\left(\tau_{2}=0<\tau_{3}<1=\tau_{4}\right)$ is uniquely defined.

Let us now present the specified quantity $H_{2}=H_{1}-H>0$ in the form

$$
H_{2}=\pi\left|\frac{d z}{d \zeta}\left(\zeta-\tau_{3}\right)\right|_{\zeta=\tau_{3}}, \quad H_{2}=\pi \tau_{3}^{-1}\left(t_{n}-\tau_{3}\right)\left|M\left(\tau_{3}\right)\right| \equiv X\left(t_{n}\right) \quad\left[M\left(\tau_{3}\right)=\varphi\left(t_{n}\right)\right]
$$

We have $d X / d t_{n}>0, X\left(\tau_{3}\right)=0$, and $X\left(\tau_{4}\right)=\infty$. Therefore, the equation $H_{2}=X\left(t_{n}\right)$ is uniquely solvable with respect to t_{n} and $\tau_{3}<t_{n}<\tau_{4}$. Thus, the conformal mapping $z=F_{*}(\zeta), F_{*}: E \rightarrow D_{0}, \partial D_{0}=P_{0} \cup L_{*}$ is uniquely defined.

Let us arbitrarily fix the points $t_{k}, t_{0}=-1<t_{1}<\ldots<t_{s}=\tau_{2}<\ldots<t_{m}=\tau_{3}<\ldots<t_{n+1}=1$ and find their images $z_{k}=F_{*}\left(t_{k}\right), k=\overline{0, n+1}$. Based on the points z_{k}, we construct system (2), (3) uniquely solvable by construction ($\alpha_{k}=0, k=\overline{1, n-1}$).

5. UNIQUE SOLVABILITY OF THE EQUATION $\boldsymbol{l}=\boldsymbol{g}(\boldsymbol{u}, \boldsymbol{\alpha})$

Theorem 3 (of existence and uniqueness). Equation (4) corresponding to the simple polygon $P \subset G(\delta)$ and, consequently, the original problem of the filtration theory are uniquely solvable.

Proof. Proof of the theorem, by virtue of Theorems 1 and 2, follows from the convergence of the continuity $\operatorname{method}\left[4\right.$, p. 122]. To apply this method, we connect the apices of the initial polygon P_{*} constructed in Sec. 4 with the respective apices of the original polygon P by smooth nonintersecting curves $S_{k}(k=\overline{0, n+1})$. By arbitrarily choosing points $z_{k}\left(S_{k}\right)$ on these curves and connecting them by straight-line segments, we obtain a family of polygons $\{P(S)\}\left[S=\left(S_{0}, \ldots, S_{n+1}\right)\right]$ with interior angles $\alpha_{k} \pi$ and lengths of the sides $l_{k}(k=\overline{0, n+1})$ [l_{k} for $k=s, s+1, m$ are calculated by formulas (3)]. By construction, $P(S) \in G(\delta)$. Further, the continuity method consists in the successive proof of unique solvability of Eq. (4) using the theorem of implicit functions for the polygons $P(S)$ starting from P_{*} continuously deformable along S. By the theorem of uniqueness for the initial polygon, it also holds true for all the polygons $P(S)$ including the initial polygon P [4, p. 122-123]. Theorem 3 is proved.

Further, several particular problems are studied.

6. FILTRATION FLOW OF UNDERGROUND WATER ALONG AN INCLINED CONFINING STRATUM UNDER A HORIZONTAL DRAIN

The filtration scheme is shown in Fig. 2 borrowed from [5, p. 231]. The upstream and downstream depths and discharges of the flow are equal to h, Q, and h_{1}, Q_{1} respectively. The domains D^{*} of the complex potential

Fig. 2

Fig. 3
$\omega=\varphi+i \psi$ are shown in Fig. 3, and the correspondence of the boundary points of conformal mappings $Z: E \rightarrow D$ and $\omega: E \rightarrow D^{*}$ is shown in Fig. $2\left(t_{j}\right.$ are the preimages of the points $\left.M_{j}, j=\overline{0.6}\right)$.

We retain here the notation of variables related to the variables z and w by the formulas $Z=-i z$ and $\omega=k w$ (k is the permeability coefficient), which were used in the monograph [5, p. 231-239].

Depending on the position of the flow branching point M_{0}, where the flow rate is zero, let us consider three flow schemes described in [5, p. 233-239].

1. Volumetric liquid inflow to the drain (discharge $Q>Q_{1}$, branching point M_{0} is on the right-hand branch of the free boundary $M_{5} M_{4}$) (see Figs. 2 and 3a).
2. Filtration liquid outflow from the drain (channel) into the ground ($M_{0} \in M_{6} M_{1}$ and $Q<Q_{1}$) (see Figs. 2 and 3 b).
3. Inflow of the groundwater in the upper part of the drain; in the lower part of the drain, the liquid leaks (seeps) from the drain into the ground (M_{0} lies on the drain $M_{3} M_{2}$ and $Q>Q_{1}$) (see Figs. 2 and 3c).

It is assumed that there are points M_{2} and M_{3} on the drain with angles at them equal to 2π in flow schemes 1 and 3 (see Fig. 2). We fix the constants $t_{6}=0, t_{2}=1$, and $t_{0}^{m}(m=1,2,3)$ (the superscript m indicates the number of the flow scheme) assuming that $t_{0}^{2}=-1, t_{0}^{3}=\left(t_{2}-t_{3}\right) / 2$, and $t_{0}^{1}=\left(t_{4}-t_{5}\right) / 2$.

The functions $d \omega^{m} / d \zeta, \omega^{m}: E \rightarrow D_{m}^{*}$ and $d Z^{m} / d \zeta, Z^{m}: E \rightarrow D$ are represented in the form

$$
\begin{gathered}
\frac{d \omega^{m}}{d \zeta}=K\left(\zeta-t_{0}^{m}\right)\left[\left(\zeta-t_{6}\right)\left(\zeta-t_{5}\right)\right]^{-1}\left(\zeta-t_{4}\right)^{-1 / 2}=\Pi_{0}^{m}(\zeta), \\
\frac{d Z^{m}}{d \zeta}=-\frac{\Pi(\zeta)}{\pi} \int_{\Omega} \frac{\sigma\left|\Pi_{0}^{m}(t)\right| d t}{\Pi(t)(t-\zeta)}, \quad \Pi=\left(\zeta-t_{2}\right)\left(\zeta-t_{3}\right)\left(\zeta-t_{6}\right)^{\alpha-2}\left(\zeta-t_{5}\right)^{-1-\alpha},
\end{gathered}
$$

where $\Omega=(-\infty, 0) \cup\left(t_{5}, t_{4}\right), K=K\left(Q_{0}, Q_{1}\right)$ is a given constant [5, p. 233], $\sigma=\operatorname{sign}(d y / d t)$, and $t \in \Omega$. On the assumption that the upstream and downstream depths h_{0}^{m} and h_{1}^{m} are given, we calculate the discharges Q_{0}^{m} and $Q_{1}^{m}: Q_{j}^{m}=K h_{j}^{m} \sin (\alpha \pi) \cos (\alpha \pi), j=0,1[5, \mathrm{pp} 234-235$.$] . We have Q_{0}^{m}>Q_{1}^{m}(m=1,3)$ in schemes 1 and 3 , and $Q_{0}^{2}<Q_{1}^{2}$ in scheme 2 (see Fig. 3).

The constants t_{3}, t_{4}, and t_{5} are calculated from the following system of equations:

$$
\begin{equation*}
b_{1}=\int_{t_{4}}^{\infty}\left|\frac{d Z^{m}}{d t}\right| d t, \quad \pi Q_{j}^{m}=\left|\Pi_{0}^{m}(\zeta)\left(\zeta-t_{6-j}\right)\right|_{\zeta=t_{6-j}}, \quad j=0,1 \tag{11}
\end{equation*}
$$

Here $b_{1}=\left|Z\left(t_{1}\right)-Z\left(t_{4}\right)\right|$ is the drainage length (see Fig. 2) and discharges Q_{j}^{m} are given quantities.
Theorem 4. Problems 1-3 of liquid filtration to the drain in the presence of an inclined water-confining stratum are uniquely solvable, and the solutions $\left(t_{3}, t_{4}\right.$, and t_{5}) of system (11) corresponding to them satisfy the inequalities

$$
\begin{equation*}
t_{k}-t_{k+1} \geqslant \varepsilon>0, \quad k=2,3,4,5 \tag{12}
\end{equation*}
$$

Proof. Proof of the theorem statements, as previously, follows from the correctness of the a priori estimates (12). Let us write out two last equations of (11) in detail:

$$
\pi Q_{0}^{m}=K\left|t_{6}-t_{0}^{m}\right|\left(t_{5}-t_{6}\right)^{-1}\left(t_{4}-t_{6}\right)^{-1 / 2}, \quad \pi Q_{1}^{m}=K\left|t_{5}-t_{0}^{m}\right|\left(t_{5}-t_{6}\right)^{-1}\left(t_{4}-t_{5}\right)^{-1 / 2}
$$

If $t_{5} \rightarrow t_{6}=0$ or $t_{4} \rightarrow t_{5}$, then $Q_{j}^{m} \rightarrow \infty(j=0,1)$, which proves inequalities (12) for $k=4$ and 5 . To prove the remaining inequalities of (12), let us consider several cases, as in Sec. 3.

Assumptions: $t_{2}-t_{3}=r \rightarrow 0$ and $t_{3}-t_{4} \geqslant \varepsilon>0$. Then, we have

$$
b_{1} \leqslant b=\int_{t_{3}}^{t_{2}}\left|\frac{d Z^{m}}{d t}\right| d t=r^{3} \int_{0}^{1} \Lambda(s, r) d s \rightarrow 0 \quad \text { at } \quad r \rightarrow 0
$$

Here the variables $t=s r+t_{3}, s \in[0,1]$ are replaced in the integral, and it is taken into account that $\int_{0}^{1} \Lambda(s, r) d s \leqslant$ $N_{0}<\infty$.

Assumptions: $t_{3}-t_{4}=r \rightarrow 0$ and $t_{2}-t_{3} \geqslant \varepsilon>0$. Then, we have

$$
I \equiv \int_{t_{5}}^{t_{4}} \frac{\sigma\left|\Pi_{0}(t)\right| d t}{\Pi(t)(t-\zeta)} \rightarrow \infty \quad \text { at } \quad r \rightarrow 0, s \in(-\infty, \infty)
$$

since $\left|\Pi_{0}(t)\right|\left|\Pi^{-1}(t)\right| \leqslant K_{1}\left|t_{3}-t\right|^{-3 / 2}$ at $t_{4}=t_{3}$. Here

$$
\left|z_{*}-z_{2}\right|=\int_{t_{*}}^{t_{2}}\left|\frac{d Z^{m}}{d t}\right| d t \rightarrow \infty \quad \text { as } \quad r \rightarrow 0, t_{*} \in\left[t_{3}, t_{2}\right)
$$

In particular, for the constant t_{*} corresponding to the point $z_{*}=Z\left(t_{*}\right)=b_{1}$ on the drain $M_{3} M_{2}$, it also follows that $z_{*}=b_{1} \rightarrow \infty$.

Assumption: $t_{2}-t_{4}=r \rightarrow 0$.
In this case, also $I \rightarrow \infty$ and, thus, $z_{*} \rightarrow \infty$.
The obtained contradictions to the inequality $\left|\ln b_{1}\right|<\infty$ prove estimates (12) for $k=2,3$. The theorem is proved.

Remark 1. In the monograph [5, p. 231-239], only the drain length b_{1} was considered as given, the constants $t_{6}=0$ and $t_{5}=1$ were fixed, and t_{4} was derived from the first equation of (11). The presence of the points M_{2} and M_{3} with angles at them equal to 2π was not taken into consideration, and thus, the mapping $Z: E \rightarrow D$ was independent of the constants t_{2} and t_{3}. Equation (11) with respect to $t_{4}>0$ was solved numerically in [5]. We were the first to solve problems 1-3 in the direct formulation.

Remark 2. Similar treatment is applied to the case where, in the vicinity of the infinite points M_{5} and M_{6}, the branches of free boundaries emanating from of M_{1} and M_{4} can reach the impermeable top of the water-bearing stratum - segments of the straight lines $M_{5} M_{5}^{*}$ and $M_{6} M_{6}^{*}$ parallel to the confining bed $M_{6} M_{5}$. At the same time, the specified segments of the straight lines $M_{5} M_{5}^{*}$ and $M_{6} M_{6}^{*}$ and confining bed $M_{6} M_{5}$ can be substituted for the polygon P with the apices $z_{k}(k=\overline{0, n+1})$, where $z_{s}=\infty$ corresponds to the point M_{6}, and $z_{m}=\infty$ $(m>s)$ corresponds to the point M_{5}.

Fig. 4

7. FILTRATION LIQUID FLOW FROM A CHANNEL INTO AN INCLINED CONFINING BED

Similar problems were studied in the monograph [5, p. 147, 167]; schemes of the filtration-flow domain are shown in Fig. 4.
7.1. Liquid Filtration from a Rectilinear Channel into a Horizontal Water Intake above a Inclined Confining Bed (Fig. 4a). In this problem, the channel bottom $P_{1}=\left\{z: x=0,0<y<y_{1}\right\}$ and drainage $P_{5}=\left\{z: x=-H, y \in\left(y_{4}, y_{5}\right) \cup\left(y_{6}, y_{5}\right)\right\}$ are equipotentials, $\varphi=0$ and $\varphi=H$, respectively. The axis of symmetry $P_{2}=\left\{z:-H_{1}=x_{2}<x<0, y=y_{1}>0\right\}$ and the confining bed $P_{3}=\left\{z:-\infty<x<-H_{1}\right.$, $\left.y-y_{2}=\left(x+H_{1}\right) \cot (\gamma \pi)\right\}$ are a streamline $\psi=0$; the free boundary L and the top of the water-bearing stratum $P_{4}=\left\{z: x=-H,-\infty<y<y_{4}\right\}$ are also streamlines $\psi=Q$ and $\psi=Q_{1}<Q, Q$ and Q_{1} are the sought liquid discharges.

In the plane of the complex potential $w=\varphi+i \psi$, to the domain $D\left(\partial D=L \cup P\right.$, where $\left.P=\bigcup_{1}^{5} P_{k}\right)$ there corresponds a half-band with a step D^{*} with the apices w_{k} and angles $\gamma_{k} \pi$ at them: $w_{0}=i Q, w_{1}=0, w_{2}=\varphi_{2}$, $w_{3}=\infty, w_{4}=H+i\left(Q-Q_{1}\right), w_{5}=H+i \psi_{5}, w_{6}=H+i Q ; \gamma_{0}=\gamma_{1}=\gamma_{6}=1 / 2, \gamma_{2}=\gamma_{5}=1, \gamma_{3}=0$, and $\gamma_{4}=3 / 2$.

The derivatives $d w / d \zeta\left(w: E \rightarrow D^{*}\right)$ and $d z / d \zeta(z: E \rightarrow D)$ are represented in the form

$$
\begin{gather*}
\frac{d w}{d \zeta}=K \mathrm{e}^{i \beta \pi} \prod_{k=0}^{6}\left(\zeta-t_{k}\right)^{\gamma_{k}-1} \equiv \Pi_{0}(\zeta), \quad \frac{d z}{d \zeta}=\Pi(\zeta) M(\zeta) \tag{13}\\
\Pi=\prod_{k=0}^{6}\left(\zeta-t_{k}\right)^{\alpha_{k}-1}, \quad M=\frac{1}{\pi i} \int_{-1}^{1} \frac{\left|\Pi_{0}(t)\right| d t}{\Pi(t)(t-\zeta)}
\end{gather*}
$$

where $\alpha_{0}=\alpha_{6}=1, \alpha_{1}=1 / 2, \alpha_{2}=1 / 2+\gamma, \alpha_{3}=-\gamma, \alpha_{4}=1-\gamma$, and $\alpha_{5}=2$. The constants $K=1, t_{0}=1$, $t_{6}=-1$, and $t_{k}=1+k(k=4,5)$ are fixed, and the constants t_{1}, t_{2}, and t_{3} and $t^{5} \in\left(t_{4}, t_{5}\right)$ are found from the system of equations

$$
\begin{equation*}
l_{k}=\int_{t_{k-1}}^{t_{k}}\left|\frac{d z}{d t}\right| d t, \quad k=1,2 ; \quad l=\int_{t_{4}}^{t^{5}}\left|\frac{d z}{d t}\right| d t, \quad H=\int_{-1}^{1}\left|\Pi_{0}(t)\right| d t \tag{14}
\end{equation*}
$$

Here the quantities H, l_{1}, l_{2}, and l are given: $H=\left|w_{6}-w_{0}\right|, l_{1}=\left|z_{1}-z_{0}\right|=y_{1}, l_{2}=\left|z_{2}-z_{1}\right|=H_{1}$, the length of the drainage slot is $l=\left|z^{5}-z_{4}\right| ; y^{5} \in\left(y_{4}, y_{5}\right)\left(z^{5}=z_{6}\right)$. Note that the ordinates y_{k} of the points $z_{k}(k=4,5,6)$ are not fixed.

A priori estimates of the solution of system (14) $0<\varepsilon \leqslant t_{k+1}-t_{k}(k=\overline{0,3})$ and $0<\varepsilon \leqslant\left|t^{5}-t_{k}\right|(k=3,4,5)$ are established in the same way as in Sec. 3. From these estimates and the results of [1], there follows the unique solvability of the original problem.
7.2. Liquid Filtration from a Rectilinear Channel into an Inclined Confining Bed. Analogous problems are studied in [6, pp. 308, 318, and 331] for the case of a horizontal water-confining stratum and in [5, p. 167] for the case of its absence.

The channel bottom $P_{1}=\left\{z: x=0,0<y<y_{1}\right\}$ is an equipotential $\varphi=0$, the axis of symmetry $P_{2}=\{z$: $\left.-H<x<0, y=y_{1}\right\}$ and the confining bed $P_{3}=\left\{z:-\infty<x<-H, y-y_{2}=(x+H) \cot (\gamma \pi)\right\}$ are a streamline $\psi=0$; on the free boundary L, we have $\psi=Q$, which is the sought liquid discharge.

To the filtration domain $D\left(\partial D=P \cup L\right.$, where $\left.P=\bigcup_{1}^{3} P_{k}\right)$ in the plain $w=\varphi+i \psi$, there corresponds a half-band D^{*} with the apices w_{k} and angles $\gamma_{k} \pi$ at them: $w_{0}=i Q, w_{1}=0, w_{2}=H, w_{3}=\infty, \gamma_{0}=\gamma_{1}=1 / 2$, $\gamma_{2}=1, \gamma_{3}=0$.

The derivatives of the conformal mappings $w: E \rightarrow D^{*}$ and $z: E \rightarrow D$ are represented in the form (13), where the products Π are taken Π_{0} in the range from 0 to 3 ; and $\alpha_{0}=1, \alpha_{1}=1 / 2, \alpha_{2}=1 / 2+\gamma$, and $\alpha_{3}=1-\gamma$.

The constants $K=1, t_{0}=1$, and $t_{3}=-1$ are fixed, and t_{1} and t_{2} are found from the following system of equations of the form (14):

$$
l_{k}=\left|z_{k}-z_{k-1}\right|=\int_{t_{k-1}}^{t_{k}}\left|\frac{d z}{d t}\right| d t, \quad k=1,2
$$

A priori estimates $0<\varepsilon \leqslant t_{k+1}-t_{k} \leqslant \varepsilon^{-1}(k=0,1)$ and unique solvability are proved similarly to Secs. 3 and 6.

Note, in the vicinity $\left|\zeta-t_{3}\right| \leqslant 1$ of the point t_{3}, there holds the inequality $\left|M(\zeta)\left(\zeta-t_{3}\right)^{1-\gamma}\right| \leqslant N<\infty$, hence, $\left|d z\left(\zeta-t_{3}\right) / d \zeta\right| \leqslant N_{0}<\infty$, which corresponds to the zero angle ∂D at the point $z_{3}=\infty$ (L and the confining bed P_{3} are parallel for $\left.z \rightarrow \infty\right)$.
7.3. Channel Bottom and Confining Beds As Arbitrary Polygonal Boundaries. Figure 4 shows the case of a trapezoidal channel bottom studied in [5, p. 167-181] in the absence of a confining bed. All the calculations in Secs. 3 and 6 hold true for this case, too. At the same time, the form of the derivative $d w / d \zeta$ is unchanged, and the product $\Pi(\zeta)$ for the domain D shown in Fig. 4a is represented as

$$
\Pi(\zeta)=\prod_{k=2}^{6}\left(\zeta-t_{k}\right)^{\alpha_{k}-1} \Pi_{*}(\zeta), \quad \Pi_{*}=\left(\frac{\zeta-t^{1}}{\zeta-t_{0}}\right)^{\alpha}\left(\zeta-t^{2}\right)^{-1 / 2} \quad(k=\overline{2,6})
$$

(α_{k} are the same as in Sec. 7.1); for the domain D in Fig. 4 b , it has the form

$$
\Pi(\zeta)=\prod_{k=2}^{3}\left(\zeta-t_{k}\right)^{\alpha_{k}-1} \Pi_{*}(\zeta)
$$

(α_{2} and α_{3} are the same as in Sec. 7.2). The constants $t^{k}(k=1,2)$ are the preimages of the points $z^{k}=z\left(t^{k}\right)$.
Moreover, the results obtained in Secs. 3-7 are also valid for the case where the channel bottom and confining beds have the form of polygons with a finite number of apices.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-00645) and within the framework of the program "Universities of Russia" (No. 04.01.038).

REFERENCES

1. E. V. Gubkina and V. N. Monakhov, "Filtration of a liquid with free boundaries in unbounded regions," J. Appl. Mech. Tech. Phys., 41, No. 5, 930-936 (2000).
2. E. V. Gubkina and V. N. Monakhov, "Applied contact problems of filtration in porous media," in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 118, Novosibirsk (2001), pp. 27-41.
3. L. Ahlfors, Lectures on Quasiconformal Mappings, Princeton (1966).
4. V. N. Monakhov, Boundary-Value Problems with Free Boundaries for Elliptic Systems of Equations [in Russian], Nauka, Novosibirsk (1977).
5. P. Ya. Polubarinova-Kochina, Theory of Motion of Ground Waters [in Russian], Nauka, Moscow (1977).
6. P. Ya. Polubarinova-Kochina, V. G. Pryazhinskaya, and V. N. Emikh, Mathematical Methods in Irrigation Problems [in Russian], Nauka, Moscow (1969).

[^0]: Gorno-Altaisk State University, Gorno-Altaisk 659700. ${ }^{1}$ Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 1, pp. 83-94, January-February, 2003. Original article submitted April 17, 2002; revision submitted June 14, 2002.

